Enrollment No:

Exam Seat No:

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Engineering Mathematics - II

Subject Code: 4TE02EMT3 Branch: B. Tech (All)

Semester: 2 Date: 20/04/2019 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 **Attempt the following questions:** **(14)**

- The series $1 \frac{1}{2} + \frac{1}{2^2} \frac{1}{2^3} + \frac{1}{2^4} \dots \infty$ is
 - (A) convergent (B) divergent (C) finitely oscillating
 - (D) infinitely oscillating
- The interval of convergence of the logarithmic series $log(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \cdots \infty$ is

$$log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \infty$$
 is

(A)
$$-1 < x \le 1$$
 (B) $-1 < x < 2$ (C) $-\infty < x < \infty$ (D) $-1 \le x \le 1$

- The value of $\int_{\cdot}^{1} \sin^{11} x \, dx$
 - (A) 10! (B) $\frac{10}{11} \cdot \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{5} \cdot \frac{\pi}{2}$ (C) 0 (D) none of these
- d) If $f_n = \int_0^{\pi/4} tan^n x \ dx$, then $(f_n + f_{n-2})$ is equal to?

(A)
$$\frac{1}{n}$$
 (B) $\frac{1}{n-1}$ (C) $\frac{n}{n-1}$ (D) $\frac{n-1}{n}$

- e) $\int_{-\sqrt{2}}^{\infty} \frac{1}{\sqrt{2}} dx$ is convergent.

f)
$$(A)$$
 True (B) False $\frac{1}{2} \left[\frac{3}{2} \right] \left[\frac{5}{2} \right] = \underline{\qquad}$

(A)
$$\frac{3}{8} (\pi)^{\frac{3}{2}}$$
 (B) $\frac{3}{8} (\pi)^{\frac{5}{2}}$ (C) $\frac{3}{8} (\pi)^{\frac{1}{2}}$ (D) $\frac{1}{8} (\pi)^{\frac{3}{2}}$

- **g**) B(1, 1) =_____
 - (A) 1 (B) 0 (C) 1/2 (D) none of these
- h) The tangents at the origin are obtained by equating to zero (A) the lowest degree terms (B) the highest degree terms

(C) constant term (D) none of these

i)
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} dx dy \text{ is equal to}$$

(A)
$$\pi a^2$$
 (B) $\frac{\pi a^2}{2}$ (C) $\frac{\pi a^2}{4}$ (D) none of these

j)
$$\int_{0}^{\frac{\pi}{2}} e^{-r^2} \cdot r \ dr \ d\theta$$
 is equal to

(A)
$$\frac{\pi}{2}$$
 (B) π (C) $\frac{\pi}{4}$ (D) $-\frac{\pi}{4}$

k) The transformations x + y = u, x - y = v transform the area element $dy \ dx$ into $|J| \ du \ dv$, where |J| is equal to

(A)
$$\frac{1}{2}$$
 (B) 1 (C) u (D) none of these

l) The degree and order of the differential equation of all parabolas whose axis is x-axis are

m) The solution of the equation $x \frac{dy}{dx} = y + x \tan\left(\frac{y}{x}\right)$ is

(A)
$$\sin\left(\frac{x}{y}\right) = cx$$
 (B) $\sin\left(\frac{y}{x}\right) = cx$ (C) $\sin\left(\frac{x}{y}\right) = cy$ (D) $\sin\left(\frac{y}{x}\right) = cy$

n) The differential equation of all non-vertical lines in a plane is

(A)
$$\frac{d^2y}{dx^2} = 0$$
 (B) $\frac{dy}{dx} = 0$ (C) $\frac{dx}{dy} = 0$ (D) $\frac{d^2x}{dy^2} = 0$

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)

a) Test the convergence of the series
$$\frac{1}{\sqrt{2}-1} + \frac{1}{\sqrt{3}-1} + \frac{1}{\sqrt{4}-1} + \dots$$
 (5)

b) Using reduction formula evaluate:
$$\int_{0}^{\pi} x \sin^{7} x \cos^{4} x \, dx$$
 (5)

c) Prove that
$$\int_{0}^{\infty} \frac{x^4}{4^x} dx = \frac{24}{(\log 4)^5}$$
 (4)

Q-3 Attempt all questions (14)

a) Prove that
$$\int_{0}^{1} x^{5} (1-x^{3})^{10} dx = \frac{1}{3}B(2, 11)$$
. (5)

b) Using reduction formula prove that
$$\int_{0}^{\pi} x \cos^{6} x \, dx = \frac{5\pi^{2}}{32} \,. \tag{5}$$

	c)	Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}$.	(4)
Q-4		Attempt all questions	(14)
	a)	Change the order of integration in the integral $\int_{0}^{a} \int_{\frac{x^2}{a}}^{2a-x} xy dy dx$ and hence	(5)
		evaluate it.	
	b)	Examine the series $\sum_{n=1}^{\infty} \frac{x^n}{n^p}$ for convergence using root test.	(5)
	c)	Solve: $\frac{(x-2y)}{(3x+y)} \frac{dy}{dx} = 3x^2 - 5xy - 2y^2$	(4)
Q-5		Attempt all questions	(14)
	a)	Solve: $ \left(xy^2 + e^{-\frac{1}{x^3}}\right) dx - x^2 y \ dy = 0$	(5)
	b)	By changing the transformations $x + y = u$, $y = uv$, show that	(5)
		$\int_{0}^{1} \int_{0}^{1-x} e^{\frac{y}{(x+y)}} dy dx = \frac{e-1}{2}.$	
	c)	Using reduction formula evaluate: $\int_{0}^{1} \frac{x^{6}}{(1+x^{2})} dx$	(4)
Q-6		Attempt all questions	(14)
	a)	Prove that $\int_{0}^{\frac{\pi}{2}} \frac{dx}{\tan^{p} x} = \frac{\pi}{2} \sec\left(\frac{p\pi}{2}\right).$	(5)
	b)	Solve: $(x^2 + y^2 + 1)dx - 2xy dy = 0$	(5)
	c)	Evaluate: $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$	(4)
Q-7		Attempt all questions	(14)
	a)	Trace the curve $xy^2 = 4a^2(2a - x)$.	(5)
	b)	Show that $\int_{1}^{\infty} \frac{\ln x}{x^2} dx$ converges and compute its value.	(5)
	c)	Find the area enclosed by the cardioid $r = a(1 - \cos \theta)$.	(4)
Q-8	a)	Attempt all questions Find the volume of the solid generated by the revolution of the loop of the curve $x(x^2 + y^2) = a(x^2 - y^2)$.	(14) (5)
	b)	Find the asymptotes of the curve $y^3 - x^2(6-x) = 0$.	(5)
	c)	Evaluate: $\int_{0}^{\infty} \frac{dv}{(1+v^2)(1+\tan^{-1}v)}$	(4)
Q-8	c)	Find the area enclosed by the cardioid $r = a(1-\cos\theta)$. Attempt all questions	

